524Uploads
214k+Views
114k+Downloads
Design, engineering and technology
Which medical imaging technique? - Practical
Investigate aspects of biomedical signal processing
The use of different types of signals is hugely important in all areas of healthcare. Signal processing engineers are involved in everything from extracting information from the body’s own electrical and chemical signals to using wireless signals to allow search-and-rescue robot swarms to communicate with each other.
Activity info, teachers’ notes and curriculum links
In this practical session students investigate aspects of signal processing. Working in teams, students convert an analogue brain signal into a digital format and transmit it across the classroom to another team using flashes from the LED on the Digital Communicator that they will need to build. The other team will record the digital format and rebuild the original waveform from that information.
This activity can be used as a hands-on extension to the ‘Which Imaging Technique?’ activity (see Related activities section below).
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Download the activity sheets for free!
All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Design an automatic lighting system
Use the BBC micro:bit programmable system to create a working prototype of a automatic lighting system
This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons.
People are always looking for ways to save energy. It is estimated that the average UK homeowner could save up to £240 a year alone on the cost of lighting their home.
In this unit of learning, learners will use the BBC micro:bit to develop a prototype for an LED based automatic home lighting system, designed to save energy.
Activity info, teachers’ notes and curriculum links
In this activity, learners will develop their programmable lighting system using the BBC micro:bit.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Make a night-light circuit
Design and make a solar powered night-light circuit
In this engaging and practical STEM activity, designed for secondary school students, learners will investigate the photovoltaic effect by designing and making a solar power night-light circuit.
The ‘Photovoltaic cells’ scheme of work involves investigating how photovoltaic cells are used and then using this technology to make a series of electronic circuits of increasing complexity. This could form the basis of a design and make activity in Design and Technology, with cross-curricular links with Science.
This could be used as a short design and make project in Electronics or Product Design within Design and Technology. It could be extended into a longer project using the ‘Design Guide (handout)’ to provide a structure for the sequence of tasks to be carried out.
Students should be divided into pairs or small teams. Their design brief is to design and manufacture a prototype solar powered night-light.
The prototype should be powered by solar energy, produce no waste by-product with normal use, provide an appropriate illumination for a task (to be identified), illuminate automatically when the light level drops (below an identified level) and it should be manufactured from reused materials, where possible.
Tools/resources required
Access to appropriate CAD software for circuit modelling and development
Modular electronics kits or prototype boards (breadboards), as appropriate
Transistor sensor circuit help (handout)
Design Guide (handout)
A range of components to manufacture the circuits
Suggested learning outcomes
By the end of this activity students will have an understanding of how photovoltaic cells work, how they can be used and the impact of using photovoltaic cells in aesthetic, economic, and environmental issues.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Investigate the photovoltaic effect
Learn how photovoltaic cells work and investigate the photovoltaic effect
In this engaging STEM activity, designed for secondary school students, learners will discover how photovoltaic cells work, how they differ from solar thermal cells, and they will investigate the photovoltaic effect.
The ‘Photovoltaic cells’ scheme of work involves investigating how photovoltaic cells are used and then using this technology to make a series of electronic circuits of increasing complexity. This could form the basis of a design and make activity in Design and Technology, with cross-curricular links with Science.
This is a short activity which involves investigating the photovoltaic effect. It could be used as a starter activity in Electronics or Product Design within Design and Technology, or to provide students with extended background information during the design and make project. It could also be used as a starter in Science.
Students will be given the ‘What is a photovoltaic cell’ handout. They should consider the following questions:
How do photovoltaic cells differ from solar thermal cells?
What commonly available products use photovoltaic cells?
What are the advantages and disadvantages of photovoltaic cells?
What factors would affect the positioning of a photovoltaic cell?
Tools/resources required
Internet access
Ideally, small operational models of solar thermal and photovoltaic cells that the students can handle
Suggested learning outcomes
By the end of this activity students will be able to list the two types of solar panel and give examples of how they are used, and they will be able to explain how photovoltaic cells work.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Identifying sensors
Identify which components can be used as electronic sensors
The role of smart sensors in our everyday lives is becoming increasingly fundamental. The Smart Sensor Communications topic focuses on what smart sensors are, how they are being used today and how they can be innovative in the future.
In this activity, the focus is on how sensors can be used to detect changes in the environment and can be used as part of a monitoring or control system.
Activity info, teachers’ notes and curriculum links
An engaging starter activity introducing students to the devices that can be used as part of an electrical system to monitor changes, and showing them that the characteristics of a device can vary according to changes in the environment.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Download the free activity sheet!
All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Prosthetics and ethics
With the development of prosthetics progressing all the time, this engineering activity for kids will enable students to find out about the systems and controls, electronics and engineering behind the ever-advancing technologies in prosthetics and body centric communications.
This is a great resource to create educational discussions on the ethics of medical robots, body centric antenna as well as prosthetics.
Activity introduction
Body centric communications have abundant applications in personal healthcare, smart homes, personal entertainment, identification systems, space exploration and military. This topic investigates the driving technology behind body centric communications, explores current health applications of these devices, possibilities for the future and the ethical issues surrounding these advancements.
In this activity students are introduced to how the present body centric antenna, plus prosthetic technology, could be compared to science fiction ‘cyborgs’. Students will also be asked to discuss ethical issues around this idea.
You could start the discussion by focusing on the positive achievements that are possible using BCAs and prosthetic devices. Then you could progress to the more sinister cyborg possibilities. Draw the discussion together in a plenary and seek a class consensus.
Students can use different ethical positions to look at the issues. How would you consider the issues from a utilitarian viewpoint? How about from rights-based, moral duty or selfish ethical positions?
As an extension you can run a debate getting the students to adopt contrasting ethical standpoints in favour for and against Cybermen.
The engineering context
Body centric communications refers to any communication on, within or around the body using wireless technology.
Engineers play a key role in the advancement of healthcare as they create access to these life-changing technologies.
Suggested learning outcomes
By the end of this STEM activity students will understand how an antenna turns radio frequency radiation into a voltage and vice versa, they will understand the role of antenna in electronic communications systems. They will also be able to consider ethical standpoints on using advanced technology to control prosthetics.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Shadow puppet experiment
This fun STEM resource focuses on making shadow puppets while nurturing an understanding of the relationship between light and shadow.
We’ve created this shadow puppet experiment to support the teaching of key topics within design and technology (D&T) and science as part of the primary national curriculum at key stage 2 (KS2). This resource focuses on making shadow puppets and developing supporting knowledge about the relationship between light and shadow.
This could be used as a one-off activity in D&T or science or linked with the IET primary activity ‘How does the light from a torch change with distance?’, which involves measuring how the distribution of light varies with distance from the light source. It could also be used in conjunction with learning in literacy – for example, creating puppets to perform a story being studied.
Activity: Making shadow puppets
Learners will make a shadow puppet using card, craft sticks and sticky tape. This not only makes learning about shadow puppets fun but also fosters creativity and storytelling skills among learners at the KS2 level.
Tools/supplies needed:
Card (photocopies of handouts, if used)
Masking tape
Craft sticks
Tracing paper (for screen)
Large boxes (for extension activity)
Scissors
Torches
The Engineering Context
Engineers often have to consider how light behaves when designing products for practical applications. For instance, the positioning of windows and artificial lighting in buildings, or the power and placement of lights and mirrors in vehicles, are all influenced by an understanding of light and shadow. This activity will give learners an insight into these considerations.
Suggested learning outcomes
Light is a type of electromagnetic radiation. Visible light is the range of the electromagnetic spectrum that can be seen with a human eye. Light’s brightness, or intensity, is typically measured as the power per unit area. Any object that blocks the path of light causes a shadow.
This activity therefore offers a blend of scientific learning, practical skills, and creative expression, making it a comprehensive educational experience. Specifically, children will learn that blocking the path of light causes a shadow, and they’ll be able to use scissors to make a graphic product.
Download our activity sheet and other teaching resources
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Please do share your highlights with us @IETeducation.
Section drawings
How to Draw a Section Drawing
This is one of a set of resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within design and technology and maths. This resource focusses on creating a section drawing of a product.
Different types of drawing are used to communicate different types of information. Section drawings are a type of 2D drawing that show the parts or features inside a product. In effect, a section drawing shows the view as if the product has been cut in half – most typically this is along the longer dimension of the product, such as its length. Section drawings are used to show what the inside of a product looks like and how the parts of a product fit together.
Producing a section drawing develops drawing skills, whilst simultaneously allowing concepts such as dimensions, proportion and scale to be introduced in a practical context.
In this activity learners will produce a section drawing of a safety helmet worn by cyclists, working in proportion and ideally to scale.
This could be used as a one-off activity or linked to other D&T activities, such as product analysis or exploded drawing (especially when using the extension activity, creating a section drawing of a pen). It could also be used in conjunction with the IET Faraday Primary Poster – Section Views.
Download the activity sheets for free!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation.
Make a gingerbread house
Kids can create a delicious gingerbread house with this fun and easy baking recipe for beginners
This fun and delicious recipe combines baking, engineering, and creativity! With this gingerbread house making project, children will have the opportunity to create their very own edible treat.
This simple baking project for beginners provides a hands-on learning experience that explores the structural components of gingerbread house construction. Learners will examine the shapes and structures that contribute to the house’s overall stability, helping them develop a deeper understanding of engineering concepts.
The engineering context
Baking is engineering. Aspiring engineers can hone their science, maths, and technology skills through baking, as they use precision and creativity to engineer new and delicious treats.
When it comes to making their gingerbread houses, children will need to channel their inner structural engineer to create a sturdy and eye-catching structure. The process of designing and building a gingerbread house requires careful consideration of the shapes, sizes, and placement of each piece, as well as the use of icing as a glue.
Suggested learning outcomes
This gingerbread house making activity offers a range of learning outcomes for students. In addition to developing baking and decorating skills, students will learn valuable STEM concepts related to structural engineering, including materials selection, load-bearing capacity, and stability. With guidance from their teacher or parents and our gingerbread house teaching activity overview, learners will have the opportunity to design and build their own gingerbread house, putting their newfound engineering skills into practice.
By the end of this activity students will be able to design and make a gingerbread house and understand how to strengthen, stiffen and reinforce structures, gaining a deeper understanding of the principles of engineering.
Download our free gingerbread house template and recipe
A free gingerbread house template and recipe are available to download. They provide step-by-step instructions, a list of materials needed, and helpful tips for teachers and children alike.
Oh ho ho, and please do share your baking and experiment highlights with us @IETeducation #SantaLovesSTEM
Careering towards the future
Explore the engineering careers that are available today, the potential rewards of these careers, how engineering has shaped our society and how engineering could transform the world we live in in the future.
Depending upon the option selected, you can also investigate the influence of famous engineers/technologists of the past and people working in Engineering today.
Part of the #IETLookAtMeNow campaign exploring the different ways that toys and imagination can represent a world of possibilities and invention to children. For engineers and scientists, the possibilities and invention never end. They are proof that our toys and dreams today impact our innovations tomorrow.
Save the Earth poster
Secondary classroom poster highlighting ideas we could all implement to help save our world.
Download the single poster or order a full set of posters for free from the IET Education website.
Weather poster
Primary classroom poster explaining more about the weather in different parts of the world.
Order a full set of primary posters for free form the IET Education website.
How to make a simple electronic switch
Learn how electronic switches work and assemble a variety of different switches in this fun and engaging STEM activity!
This is a free resource that could be used in KS2 as an extension to an activity to introduce circuits, or to support a design and make project, such as the doorbell activity or adding a motor to the ‘cardboard cars’ activity.
This activity will take approximately 70-90 minutes.
Tools/resources required
Projector/Whiteboard
4 x AA batteries in holder
Buzzers (e.g. Miniature Electronic Buzzer 6v)
3 lengths of wire, each 100-150 mm long (only a single length is required if a battery holder with attached wires is used; no wires will be needed if the buzzer also has attached wires)
4 metal split pin fasteners and 1 paper clip per pupil
A5 pieces of card (can be cut to A6 for backing of the paper clip switch and 2 x A7 for the folded and foil switch)
Metal foil
Sticky tape or electrical insulation tape.
(Potential sources for the components include Rapid or TTS Group)
If needed: Wire cutters/strippers
Optional:
Hole punches (ideally single hole punches)
Scissors
Pre-made models of each switch, for demonstration
Electronic switches
An electrical circuit is a group of components that are connected together, typically using wires. The wires are usually copper metal, which is highly conductive, coated with insulating plastic, to prevent electric shocks. The circuit must be continuous (i.e., have no breaks) to allow electricity to flow through the components and back to its source, such as a battery. Switches make a gap in the circuit to stop electricity flowing when they are open. There are a wide variety of different types of switches that can be used.
The engineering context
Circuits form the basis of all electrical equipment, ranging from lighting in homes to televisions and computers.
Suggested learning outcomes
By the end of this activity students will be able to construct an electrical switch, they will have an understanding that a complete circuit is required for electricity to flow, and they will be able to construct an electrical circuit.
Download the activity sheets for free!
All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation
Build a bunny craft activity
Making structures from card strips and assembling these into animal forms
In this fun Easter themed STEM activity for kids, students will learn about 3D structures within a graphical project. Learners will build a bunny using card strips from a template.
This free resource, aimed at primary school children, could be used as a main lesson activity, to teach learners about simple structures made from separate parts.
This is one of a set of resources designed to allow learners to use Easter themes to develop their knowledge and skills in Design and Technology and Mathematics. This resource focuses on building a card structure, to make a bunny.
The teacher will first print the free activity sheet, which can be found below, onto thin card and distribute to the learners.
Learners can then follow this step-by-step guide to build their own DIY Easter bunny.
If time allows learners could decorate their Easter bunnies. They will then share their completed bunnies with the class.
This activity will take approximately 50 – 80 minutes.
Tools/resources required
Build a bunny handout
Scissors
Glue
Colouring pencils/pens (optional to colour in your bunny before assembly)
The engineering context
Engineers use nets and card to allow them to make scaled 3D models of buildings and other structures, as well as packaging for products.
Suggested learning outcomes
By the end of this STEM challenge learners will be able to understand how structures are made using separate parts and they will be able to make and assemble a bunny structure from card strips.
Download the free Build a bunny activity sheet below! Also includes a bonus worksearch to enhance sticky learning.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales.
Please share your classroom learning highlights with us @IETeducation.
Photovoltaic cells - Investigating circuits
In this solar panel STEM project, students will investigate the photovoltaic effect by manufacturing a simple circuit and integrating it into a product, in this case a version of the popular jitterbug project.
The jitterbug is a device that moves due to vibrations caused by an off-centred mass on a motor’s driveshaft, can be powered by sunlight when connected to a photovoltaic (PV) cell.
Learners will gain insight into the works of sustainable technology by learning about photovoltaic cells (these solar-powered cells are a primary component in renewable energy solutions).
This is one of a set of resources developed to aid the class teaching of the secondary national curriculum, particularly KS3. It is part of the ‘Let there be light’ scheme of work, which involves investigating how photovoltaic cells are used and then using this technology to make a series of electronic circuits of increasing complexity. This could form the basis of a Design and Make Assignment (DMA) project in design and technology (DT), with cross-curricular links with Science.
The engineering context
Understanding how to build a simple circuit is one of the fundamental skills in engineering. It provides the basis for understanding electricity and electronics, which are integral to many areas of engineering - from electrical and electronic engineering to computer engineering and even mechanical and civil engineering.
Furthermore, photovoltaic cells, or solar cells, convert sunlight directly into electricity. This technology plays a key role in renewable energy solutions, which are becoming increasingly important due to the global push towards sustainable living. Understanding how photovoltaic cells work gives students insights into this technology, preparing them for future innovations in the field.
Suggested learning outcomes
Upon completion of this lesson, students should have a comprehensive understanding of how photovoltaic cells work and how they can be integrated into a circuit. They will gain hands-on experience in manufacturing a simple circuit and integrating it into a product. This activity not only deepens their understanding of the photovoltaic effect but also exposes them to the practical side of electronics and product design.
Download our activity sheet and related teaching resources
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download (including the video), and all the documents are fully editable, so you can tailor them to your class’s and your schools’ needs.
Please do share your highlights with us @IETeducation.
Make an infrared game
In this activity, students will design a fun infrared ‘tag’ game.
It ideally needs to be preceded by our input, process and output activity as students must draw on their earlier work for designing the game.
It’s one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3, supporting the teaching in engineering and design & technology (D&T).
Activity: Designing an infrared ‘tag’ game
Students will design a new version of the classic tag game using their electronics knowledge to create a fun interactive experience.
Learners will review our design brief to design a novelty “tag” game using emitter and detector circuits (which have been tested previously in input, process and output) to indicate when a player is “tagged”. The game needs to be easy to use and playable both indoors and outdoors.
As a class, students will review the key requirements of the brief and discuss these in pairs. They will then draw their design ideas with annotations. From their ideas, they’ll select one design for modelling using 3D CAD software. Finally, they should present their idea to the class for feedback on how it can be improved.
Download our activity overview for a detailed lesson plan on designing a fun infrared tag game.
The engineering context
Infrared technology has been used in the design of all sorts of fun devices, from TV remote controls to Wii remotes, mobile devices, and laser tag games. By understanding how this technology works, learners can start their journey to potential careers in computer games engineering.
Suggested learning outcomes
By the end of this lesson, students will be able to analyse a design brief. They’ll also be able to explain how research findings affect design ides as well as be able to generate ideas for a product. Finally, they’ll be able to produce a 3D CAD model of a design idea.
Download our activity sheet and related teaching resources
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
Download our classroom lesson plan and presentation and please do share your highlights with us @IETeducation.
Product analysis with the BBC Microbit
Analyse an existing personal alarm system
This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons.
Schools are busy environments and it is easy for learner’s bags to be left unattended, taken by mistake or even stolen. Alarm systems using embedded electronics and programmable components can be developed to protect the property of learners during the school day.
In this unit of learning, learners will research, program and develop a working school bag alarm system using the BBC micro:bit.
Activity info, teachers’ notes and curriculum links
In this activity, learners will carry out an analysis of an existing, commercially available personal alarm system.
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
Download the free activity sheet!
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
And please do share your classroom learning highlights with us @IETeducation
Programming commands
Learning to programme using BASIC language commands
This activity is designed to build on understanding of programming commands and what they are used to do in a program. It requires students to show a detailed knowledge of each command and what it is used to do. It also requires them to apply programming commands in a real context.
Students will engage with the BASIC language commands, understanding their purpose and how they function. They will write their own program to control an LED light, seeing first hand how their code translates into action.
BASIC is a simple programming language that can be used to program electronic systems. It consists of a set of commands that can be used to perform particular functions.
This is one of a set of resources developed to aid the class teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within engineering and design and technology (DT).
Activity: Learning to programme using BASIC language commands
This activity involves understanding and applying BASIC programming commands. Starting with a discussion about the language and its common commands, students will then predict the functions of commands like ‘high’, ‘low’, ‘goto’, ‘wait’/‘pause’, ‘if’, ‘else’, and ‘stop’. They will put their understanding into practice by writing a program to control an LED light. Reflection on their experience and a question-answer session will round off the activity, consolidating their learning and addressing any queries.
The engineering context
Programming plays a crucial role in engineering, especially with the rise of programmable systems, such as smart devices and autonomous vehicles. By learning to program in BASIC and applying it in a real context, students get a sense of how engineers use programming to create solutions and control systems.
Suggested learning outcomes
Through this beginner activity, students will gain an understanding that programs can be written using programming code. They will learn the purpose and function of a range of BASIC programming commands, and they will also get a chance to write a program using these commands to meet a given design brief. The activity aims to provide students with a solid foundation in programming, equipping them with the skills and knowledge to further explore this vital field.
Download our activity sheets for free!
The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales.
All activity sheets and supporting resources are free to download (including the video), and all the documents are fully editable, so you can tailor them to your class’s and your schools’ needs.
Please do share your highlights with us @IETeducation.
What is Remote Surgery?
Learn about the robots used to perform remote surgery and the important role of electromagnetism
Telemedicine is a new and fast-developing field in healthcare. Even 20 years ago the idea of a surgeon being able to operate a robot from hundreds of miles away in order to perform an operation seemed like science fiction.
Today, this is not only possible but engineers, working with scientists and doctors, are now designing robotic systems which will be able to operate on patients with no human intervention at all.
This activity is a quick, engaging introduction to a lesson using telemedicine and robotics as a context to explore electromagnetism and the link between technology and real-life science.
Download the activity sheets for free!
And please do share your classroom learning highlights with us @IETeducation
Create a stone garden display
Create a stone garden display for the school entrance to celebrate the coronation of King Charles III
In this activity learners will make use of the theme of the King’s coronation to design a rock garden in the style of a flag or other item to commemorate the event. They will consider the design brief for the criteria, use a template to produce a design on paper, consider the scale for the final display and produce the final display.
The teacher will first explain what a commemorative stone garden or display is with suitable examples which learners will discuss to state what is good about each example and what could be done better. Learners will then discuss which images should be used, for example, a Union Jack flag or a crown. The teacher will then lead the learner through the stages of design, scaling up, making and installing their stone garden where the class will come together to assemble their display in the designated area at school.
This activity can be simplified (particularly for less able students) by supplying regular sized pebbles and cutting out the paper rocks to be the same size as these pebbles, then missing out the maths scaling part of the activity. To help, learners could also be provided with images for inspiration, e.g. flags, crowns, school entrance locations, etc.
Use the handout for learners to cut out the 2D paper stones, sketch their design ideas onto them and assemble their stones into their garden design.
As an extension students could create a border around their display incorporating flowers and plants and/or design a new flag to represent the whole of the United Kingdom.
Tools/resources required
Coloured paper – red, blue and white
Scissors
Glue sticks
Alternative: coloured pencils or paints
Paint (water based acrylic paint)
Brushes and water to clean them
Gloves and overalls
Stones and small cobbles
Paint suitable for outside use
The engineering context
All designers and engineers need to be able to produce ideas related to certain themes and follow a design brief. This ensures that the products they design will meet the needs of the end users, customers or clients.
Using natural materials is becoming more common in the built environment. It is important for engineers to have a working knowledge of different natural materials and their potential applications.
Suggested learning outcomes
By the end of this free resource students will be able to design and produce an attractive stone display to celebrate the King’s coronation; produce designs that meet a given brief; and be able to use measurements and scaling when designing.
All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.